
 
 

 

  

Abstract— In this paper, we present Greenolive, an open 
platform for wellness management ecosystem. Wellness 
management applications, which facilitate preventive care and 
chronic disease treatments, are considered as a key component 
to enhance healthcare quality and reduce healthcare cost. 
Currently, most of the wellness management applications are 
device-oriented, stand-alone software and lack of open APIs 
that allow new value-added applications to be developed 
rapidly. Further, these wellness applications have not fully 
utilized the collected wellness monitoring data to generate new 
knowledge that can help people to further improve their 
wellness status. In this paper, we advocate an open platform 
that provides services that are essential to wellness 
management, and manages the services to be developed. 
Further, we adopt an elastic infrastructure to deal with 
scalability issues. We expect independent software vendors to 
develop new wellness management applications using the 
provided services and to deploy them on the platform. We 
believe such an ecosystem can greatly promote wellness 
management applications, much like we witness in other 
application domains, e.g., social network, enterprise resource 
management.    

I. INTRODUCTION 
Wellness management, which aims to manage people’s 
lifestyle, is key for preventive care and chronic disease 
treatments that help people maintain and improve their 
health. For example, the cornerstone of Type II diabetes 
treatment consists of lifestyle modification and exercise and 
weight management[3], which can be facilitated and 
enhanced by wellness management applications. With the 
recent advances in personal wellness monitoring devices and 
living sensors, wellness management applications are now 
well-positioned to provide awareness on wellness status and 
treatment progress, generate alerts of potential risk, and 
make suggestions on how to maintain and improve healthy 
lifestyle. Specifically, these applications are developed 
based on collected information about vital signs (e.g., heart 
rate, blood pressure), nutrition, physical exercise, and living 
environments. It is considered as an efficient and low cost 
solution for improving healthcare quality. However, current 
wellness management services/applications are not as 
popular as they should be, as there are some key 
weaknesses. First, most of the current solutions are 
device-oriented and PC-based one-fits-all applications. As 
wellness management applications should be highly 
personalized, the one-fits-all paradigm usually cannot satisfy 
the unique requirements of different users. For example, 
glucose monitoring should be different for Type I and Type 
 
 

II diabetes. Also, these applications are tightly integrated 
with the provided devices. Such an application per device 
paradigm has imposed burdens on users to coordinate the 
many disintegrated/disconnected applications. In an ideal 
case, these applications can work collaboratively to provide 
comprehensive services for end users. Further, these 
PC-based applications lack of open API that can enable the 
development of more value added services. In contrast, in 
other areas such as social network [2] and customer 
relationship management [3], independent software vendors 
(ISVs) have developed many new popular services and 
business models, wherein the platform operators do provide 
easy accessibility (provisioned as web applications) and 
open APIs. 
In fact, the progress in these application areas (e.g., social 
network) gives us directions on how wellness management 
applications should be evolved.  On the one hand, it is 
important to provide an open platform to build ecosystems. 
On the other hand, developing a platform for wellness 
management has its own challenges: 

• Wellness data collection. There are various data sources 
from different kinds of devices/sensors for wellness 
management applications, which include device/personal 
identification, vital signs, nutrition, physical activity, living 
environments, etc. Even for the same type of devices, 
different vendors may adopt different data formats to 
represent the measurement. Therefore, a unified ontology 
framework is required so that data in different formats can 
be transformed in a unified format and semantics.   Another 
issue is about data collection. Data from various 
devices/sensors or media (e.g., data feed from Web) are 
collected with different collection policies. For example, 
when collecting data from vital signs monitoring devices, 
i.e., blood pressure, some clinical guidelines need to be 
followed, in order to guarantee the data quality.  It is 
important for the platform to facilitate the data collection 
process (e.g., data format/semantics transformation), so that 
data can be used by different applications/services. 

• Realtime wellness monitoring.  Providing wellness 
awareness for users is a key issue, as it can give end users 
incentives to continue using the wellness management 
applications. For example, when wellness measure data are 
uploaded, certain feedbacks about the user’s wellness status 
should be provided. Technically, it is an event processing 
problem, with each data collection session considered as an 
event occurrence. Therefore, the platform needs to provide a 
programming model that allows ISVs to specify and execute 
the event processing logic. Once the event processing logic 
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is deployed, how to efficiently execute them is a challenge, 
given the fact that overall volume of events can be very high 
with the number of users increasing. Further, the event 
processing logics are highly dynamic, as the monitored 
entity (human)’s activity and status are very dynamic. 
Therefore, dynamicity support is a key issue for successful 
wellness monitoring.  

• Analytics for wellness compliance and progress. With 
the collection of wellness data and results from realtime 
event processing, the platform can accumulate a very rich 
data set for analytics to generate wellness evidences.  The 
generated evidences can be either used in realtime 
monitoring as new event processing logic, or provide as 
suggestions for end users to change their lifestyles for better 
wellness. In this aspect, the platform needs to provide tools 
that allow ISVs to specify and execute 
Extraction-Transform-Load (ETL) logic and to define 
evidence mining tasks. Also, given the fact that data is 
stored in distributed locations, a scale-out solution may be 
required. Furthermore, the platform also needs to provide 
mechanisms to use evidences generated. It should be noted 
that when the end-users’ data are used for analytics, 
appropriate access control is required, for protecting the 
privacy of end users.  
In our project, to tackle these challenges we develop an open 
platform, dubbed Greenolive, for wellness management 
ecosystem. The distinct features of our platform are: 

• Open platform for ecosystem as a service. We adopt the 
software-as-a-service paradigm that enables ISVs to develop 
wellness management applications.  Such an approach 
requires the platform to provide some services (APIs) that 
are essential to develop wellness management applications. 
To enable an open platform, we adopt Web services (i.e., 
restful API) to provision the wellness management 
functionalities. Here, we provide four categories of services 
that are required to support most of the wellness 
management scenarios, which include (i) data transformation 
& routing service that facilitates information flow on the 
platform; (ii) wellness monitor service that processes 
information in realtime fashion; (iii) wellness analytics that 
provides deeper understanding on people’s wellness; (iv) 
personal wellness record & knowledge repository that 
persists wellness information and provides information 
access APIs.  

• Elastic cloud architecture for scalable service 
provision and execution. By supporting ISVs to develop 
new wellness management applications on this platform, we 
expect very dynamic workload. Also, the different services 
come with different workload requirements. For example, 
the workload of data transformation & routing services is 
depended on the number of users and associated devices and 
the frequency of data collection. While for wellness monitor 
services, workload is mainly depended on event volume and 
complexity of the event processing logic. These two services 
consume resources of network bandwidth, memory and CPU 

and impose realtime processing requirement. The wellness 
analytics services consume additional I/O and storage and do 
not always work in realtime. In our work, we adopt an 
elastic cloud architecture to address the scalability and 
dynamic workload issues.  
In this paper, we will present an overview of the platform 
and mainly focuses on the monitor and analytics features. 
Duo to the limitation of space, the detailed discussion of 
service management is out of scope of this paper. The rest of 
paper is organized as follows. Section 2 provides the 
overview of our platform. Section 3 describes the wellness 
monitoring framework. Section 4 illustrates the wellness 
analytics services. Section 5 reviews related work and 
Section 6 concludes the paper. 

II. GREENOLIVE PLATFORM 

Fig. 1 illustrates the simplified Greenolive platform 
architecture. There are four main components, namely (i) 
Data Transformation & Routing Service; (ii) Wellness 
Monitor Service; (iii) Wellness Analytic Service; and 
(iv)Wellness Record & Knowledge Repository. With these 
components that build on top of a cloud infrastructure, 
developers can readily create two kinds of portals essential 
to personal wellness, namely (i) Wellness Management 
Portal that connects with the devices/sensors and provides 
end users wellness services based on the collected data, and 
(ii) Wellness Care Portal for care assistants. It should be 
noted that Wellness Management Portals can be deployed on 
either PCs or Smartphones. In the following subsections, we 
will discuss information flow, present wellness application 
development cycle, and explain how wellness management 
is realized, using a scenario.  

A. Information Flow 
Our platform supports two kinds of information flows, 
namely event flow and data flow. In our platform, 
sensors/devices are connected to the information gateway 
that Wellness Management Portals run on. When end users 
are using wellness services, data are collected from 
sensors/devices following pre-specified data collection 
policies. Data collection policies are formulated as Event 
Condition Action (ECA) rules in our system. An event can 
be (i) Time-based trigger, e.g., every day at 10 o’clock, 
every 5 minutes for a week. Such events usually are used to 
collect vital signs data; (ii) Life activity event, e.g., 
before/after every meal. Such events usually are used to 
initiate vital signs collection that is driven by clinical 
guidelines. For example, to trace the wellness status of a 
diabetic patient, it is import to record glucose level before 
and after meal; and (iii) Event triggered by measurement 
result of vital signs. Such events are used to trigger 
follow-up measures when abnormal vital signs are detected.  
 

 

 



 
 

 

 
Fig 1. Simplified Greenolive Platform Architecture 

For example, when blood pressure measurements indicate 
hypertension, ECG measurements may be required. 
Combined with user identifiers, all collected data is 
considered as raw data (which may be encrypted for 
privacy/security concerns) that would be sent to the Data 
Transformation & Routing Service. When the service 
receives raw data, it transforms the information into a 
standard format with semantics annotation. In our platform, 
we adopt Continua [1] as the target transformation format to 
be conformed to. Further, the service determinates whether 
an event should be generated and routed to the Wellness 
Monitor Service for further processing. After the monitor 
service processes the event, a realtime feedback can be 
generated for related end users. Further, wellness event can 
be used by the analytic service for prediction scoring. Such 
an information flow is considered as the event flow. 
Meanwhile, the routing service forwards the wellness data in 
the Wellness Record & Knowledge Repository for later 
access.  Integrated with other data sources such as previous 
personal health records, the accumulated wellness data can 
then lend support to wellness evidence mining as parts of the 
Wellness Analytics Service. Eventually, the new wellness 
knowledge will be delivered to end users. This is considered 
as the data flow of the system. 

B. Service Development Cycle 
Greenolive provides open APIs that allow ISVs to develop 
new wellness management applications. A typical wellness 
application consists of data transformation & routing 
services, wellness monitor services and wellness analytic 
services.  Therefore, developing new applications includes 
the following three aspects of efforts. 
1) Developing Data Transformation & Routing Service 
The first step to develop a new wellness management service 
is identifying related data sources. If new devices/sensors are 
required, the developer can customize the data 
transformation services to transform the raw data from 
standardized format. Further, the developer needs to model 
the data collection policies and deploy them as part of the 

Wellness Management Applications. The policy specifies 
when and how the data should be collected. For example, a 
data collection policy for collection blood glucose levels 
should be measured before and after every meal. It should be 
noted that developers also need to decide that whether 
collected raw data need to be processed in realtime fashion 
or not. In case of realtime monitoring is necessary, event 
instances are generated and routed to Wellness Monitoring 
Services.   
2) Programming Monitoring Logic 
The second step to develop a new service is programming 
monitoring logic. The platform provides APIs that allows 
developers to (i) subscribe the related events; (ii) filter the 
un-interested events; (iii) correlated event to associated 
monitoring entities. In our platform, notion monitor context 
is used to represent the monitor entities, i.e., the wellness 
status of end users. A monitor context instance is identified 
by a unique user ID and persisted in personal wellness 
record; (iv) update the monitored status of entities, and (v) 
generate and delivery alerts. It should be noted our platform, 
the event processing logic is highly dynamic, due to the 
adjustment of the treatment plan and wellness goal and this 
dynamicity of wellness services.  
3) Developing Analytic Service 
The third step to develop the wellness management service 
is creating analytics applications. The platform provides an 
API for healthcare applications to (i) integrate heterogeneous 
data source (Sense), (ii) draw predictions by applying or 
extending models in a repository (Predict), and (iii) trigger 
proper responses (Respond).  The ultimate goal is to enable 
any ISV to use the API and the Sense-Predict-Respond 
framework to implement their services and exchange 
information with 3rd party applications.  

In the Sense stage of (i), a developer first creates a 
template that records steps needed for generating features 
from selected data sources. In particular, the template calls 
functions from API to perform three main tasks: privacy 
control, data cleaning, and feature extraction.  Privacy 
control functions verify whether a user can access all the 



 
 

 

requested data fields by invoking policies which determine 
who have the authority to access what part of the data and 
what combination of the data fields should never be accessed 
together. Data cleaning functions maintain rules of handling 
missing values, and data that are uncertain and inconsistent. 
Feature extraction functions specify how to recognize 
semantic entities and their syntactic links from unstructured 
information (such as clinical notes) and how to transform the 
extracted information into standardized features.  

In the Predict stage of (ii), a developer locates a model 
repository, identifies models needed for meeting the 
requirement of the analytic application, selects the model 
from the repository, and performs analysis on target patient’s 
feature set. If the selected model does not exist, the 
developer applies the Create function to train a new model, 
using the modeling method and the feature set specified in 
the modeling schema.  Also, if the selected model needs to 
be adapted with new data, such as recent history of the target 
patient, the developer applies the Update function to retrain 
the model, using the specified method and feature set. To 
enforce compatibility and exchangeability, all the models in 
the repository are stored and extended in compliance with 
the same standard, e.g., the Predictive Model Markup 
Language (PMML) [5].  

Finally, in the Respond stage of (iii) the developer 
specifies the Event-Condition-Action (ECA) rules to 
regulate the connection between the prediction results from 
(ii), e.g., the safe threshold of glucose concentration learned 
from previous records, and the action items, e.g., updating 
the monitoring logic in Step (1) with the safe threshold 
found in (ii).  

At run time, the working system will load the feature 
generation template. It will first check with the feature 
extraction rules and privacy control policies to determine 
which data fields to be included in an integrated view. Then 
it will treat uncertain data fields in the integrated view with 
the pre-specified data cleaning procedure, transform the 
integrated view into a feature set using the specified 
extraction rules, and finally load the feature set into memory. 
Before entering the prediction stage, the system will check 
whether the selected model exists or needs update.  If a new 
model is required for prediction, it will be trained according 
to what is specified in the modeling schema. In the 
prediction stage, the loaded feature set will be validated 
against the selected model.  Given the validation result, the 
system will determine the event and conditions and apply the 
ECA rules to trigger the right action in the response stage. 

C. Scenario 
When an end user logs on the Wellness Management Portal, 
the portal may remind the user to measure some vital signs. 
When the user initiates the process, the related service will 
apply the clinical guideline for vital signs measurement. 
When data are uploaded, the collected data are consumed by 
the Wellness Monitor Services. By executing the event 
processing logic, the monitor services exanimate the new 
received data with historic data to provide realtime feedback. 
The feedback can be an alert for the user to be aware of an 
out of range vital sign measurement result. In some case, 

some notifications may be generated and delivered to 
wellness assistants for further investigation.  The collected 
data and processing results are persisted in the Wellness 
Record & Knowledge Repository. 

III. REALTIME WELLNESS MONITORING 
Currently, realtime wellness monitoring focuses on 
treatment compliance management, for example, chronic 
disease care. Chronic disease treatment consists of clinical 
and home care. Home care is very important during the 
treatment, wherein most of the medical procedures are 
occurred. However, currently, there are not sufficient 
services that can facilitate home care. On the one hand, the 
end users lack of awareness on how well they adhere 
treatment plans. On the other hand, doctors either lack of 
information or tooling supports to understand the 
effectiveness of home care. In this section, we will present a 
solution that allows ISVs to develop new wellness monitor 
services that are able to provide better awareness.    
A. System Requirements 
Typically, monitoring on home care for end users focuses on 
vital signs, physical exercise, nutrition, etc. Due to the 
diversity of people’s wellness conditions, such as mobility, 
cardiac performance, and nutrition habits,, the monitoring 
service requires personalization. Further, human’s activities 
and wellness progress are dynamic. End users may switch to 
different wellness services, or adopt new devices, etc. Also, 
the doctor may change treatment plans, according to 
progress of patients’ wellness recovery. This requires 
monitor services to support dynamicity as part of the 
non-functional requirements. Given the fact that the number 
of monitor services and end users may scale up, the platform 
needs to deal with scalability issues. 
B. Cloud-based Wellness Monitoring Service 
In our platform, we introduce a cloud-based wellness 
monitoring service framework. The framework provides: (i) 
Monitor service development API, for developing event 
processing logic for realtime feedback. The scope of the API 
is given in previous section. (ii) Service management API, 
for managing the dynamicity of the application logic. The 
API enables runtime evolution of event processing logic. 
The dynamicity of the application logic may include (a) 
change of event subscription and associated filtering 
predicates; (b) modification of metric definition and 
associated computation logics; (c) adjustment of alert 
generation logic. (iii) Elastic service runtime architecture. 
We propose a cloud-based infrastructure to hosting the 
monitoring services developed by ISVs. The infrastructure 
includes: (a) queue services for message transportation; (b) 
runtime engine for executing event processing logic; (c) 
runtime data store for persistence. It should be noted that 
these three components are self-management 
Platform-as-a-Service, i.e., they can automatically 
scale-out/in according to the workload. 

IV. ANALYTICS FOR WELLNESS MANAGEMENT 

Central to the development of a wellness management 
service is the analytic capability to transform wellness 



 
 

 

monitoring data into actionable insights. In this section, we 
use the scenarios of diabetic care to demonstrate the use of 
analytics and the associated challenges. In particular, we 
focus on three areas: disease management, lifestyle 
management, and disease learning. 

A. Disease Management 
In the first scenario, the process of transforming 

monitoring data into tailored feedbacks involves four major 
analytics tasks: (1) predict glucose concentration 
ahead-of-time; (2) determine abnormal glycaemic episodes; 
(3) regulate insulin delivery; and (4) generate personalized 
management plans.  To address these tasks, we need to 
carefully craft models that describe the characteristics of the 
target phenomenon such that the models can be used to 
validate the conformity of incoming data for detection or 
ahead-of-time-prediction. For example, the monitor service 
needs to determine safe thresholds for glucose concentration 
and identify predictors of hyperglycemia and hypoglycemia 
episodes. A closed loop insulin delivery system also needs 
prediction models to determine optimal insulin delivery 
rates.  

Despite the success of the physiology-based and 
data-driven modeling approaches in experiment settings (c.f. 
Section V), there still exist challenges in employing them to 
create analytics services.  First, the creation of 
physiology-based compartmental models can be hindered by 
insufficient knowledge of the compartments, e.g., the 
structure and dynamics of the insulin hormone [6]. Inter- and 
intra-patient variability, which has been found in previous 
research as significant, has to be addressed each time the 
models are applied [7,8].  Second, the data-driven models 
also have to account for inter- and intra-patient variability 
before drawing predictions on the targeted patient.  
Moreover, the continuous glucose monitoring (CGM) 
scenario poses a new realtime analysis requirement to 
existing temporal modeling techniques.    

 In fact, there are several technical questions and research 
issues remain to be answered for the development of 
diabetes management service.  The key questions include 
how to compensate for the uncertainty between the proposed 
models and targeted patients and, if necessary, how to adapt 
models for the patients.  Specific to the CGM scenario, there 
are also questions about how to adapt the temporal models 
for the targeted patient and compute them efficiently.  Lastly, 
since both the physiological and data-driven modeling 
approaches have shown potential in disease management, we 
can develop new approaches that integrate prior knowledge 
of the physiological model into the data-driven one.  

B. Lifestyle Management 
Previous studies have shown the effectiveness of lifestyle 

interventions in diabetes prevention and management. 
However, the computer-assisted programs have not been 
fully leveraged the awareness of the patient’s health 
conditions obtained by monitor services.  For example, 
depending on the current glucose concentration, different 
types of diet plans and physical exercises can be proposed to 
the target patient to optimize glycemic control. Also, if the 

monitor service comes with the capability to recognize 
dietary intakes (e.g., by note-taking or smart object 
recognition device) and physical exercise (e.g., by notes or 
by sensors), the information can also serve as pre-conditions 
for optimization.   

This has led us to the challenge of casting the task of 
lifestyle intervention planning into an optimization problem. 
Previously, many frameworks were proposed to treat similar 
problems in the area of operational and statistical research, 
e.g., multi-attribute optimization and multi-attribute decision 
making. To apply these frameworks, we need to specify the 
knowledge of monitoring data and personal lifestyle history 
as optimization constraints. In addition, we also infer user 
models of the target patients based on their preferences and 
use the user models to adapt their lifestyle intervention 
plans.  

C. Disease Learning 
Monitoring data collected for disease and lifestyle 

management can also be accumulated to generate evidence 
for clinical decision support and disease learning. In general, 
there are at least three types of predictive diagnostic 
decisions: (1) prediction of the risk of developing diabetes; 
(2) early diagnosis of diabetes and (3) prediction disease 
progression and related complications, e.g., cardiovascular 
diseases.  Among these clinical decisions, (2) and (3) are the 
most promising to be enhanced with addition information 
from the monitoring data. First, the monitoring data of the 
key glycemic control players (e.g., fasting plasma glucose, 
fasting serum insulin) will be collected and stored in the 
database. Then, the analytics component can perform 
predictive diagnosis on disease progression and 
complications, leveraging the physiological models of the 
key players.    

Given the high risk of diabetes as well as individual 
predisposition to target organ injury, it is essential to 
develop such disease learning and predictive diagnostics 
applications to support clinical decisions on pre- and 
diabetes care.  Despite the success of previous research in 
quantifying the properties of the likely disease evolution 
path with physiology-based analytics models, there still 
exists challenge to apply these models in practice -- 
specifically, how to use the collected personal data to make 
accurate prediction of disease progression and complications 
on the individual level for clinical decision support. As for 
the research of disease learning, there also remains the 
question about how to find similar patients from the pool of 
accumulated monitoring data. Automatic (or 
semi-supervised) clustering may be needed to identify 
sub-population that has distinctive sensitivity to certain 
external factors and propensity to certain complications. 
As we discussed earlier, analytic services provides 
programming models and related APIs, testing/debugging 
data set, and runtime environment that facilities ISVs to 
develop new applications for the above three areas. It should 
be noted that knowledge generated by the analytic 
applications can be deployed as event processing logics, in 
order to provide end users deeper awareness of wellness 
status in realtime fashion. 



 
 

 

V. RELATED WORK 
A common expectation among the research community is 

that monitoring data can serve to improve the different 
stages of the diabetes management process. For instance, the 
analytics component improves the self-managed insulin 
delivery system by providing instant glycemic control 
suggestions and generating alerts of hypo-/hyper-glycemia 
conditions to patients and their caregivers. Furthermore, with 
the recent advances in subcutaneous and non-invasive 
optical sensors, there comes the need of a real-time analytics 
component that can transform the CGM data into useful 
information, e.g., prediction of next-hour change of blood 
glucose concentration. Clinical studies have shown that 
CGM is effective for maintaining glycated hemoglobin at a 
safe level and preventing severe hypoglycemia episodes [9]. 
In the cases that a closed-loop automatic control system is 
adopted, it is imperative to adjust the dose and timing of 
insulin injection with respect to the anticipated changes.   

Diabetes researchers have proposed different ways to 
learn analytics models based on the different types of 
monitoring data. Some employ the understanding of 
metabolic dynamics in diabetes patients to develop 
physiological-based compartmental models. The models are 
then used to simulate glucose-insulin interaction and to 
trigger proper responses for preventing hyperglycemic 
episodes [8,10]. Other researchers in bioengineering attempt 
to learn predictive models from data directly.  For example, 
some infer statistical models to learn how glucose 
concentration changes in response to external factors such as 
diet, physical activity and medication [11].  Recently, with 
the CGM data available, more and more researchers focus 
on inferring models from time series to predict near-future 
glucose concentration [12,13].  

Wellness data has also been expected to lend support to 
the creation of other wellness management services. In fact, 
many large-scale studies have confirmed the effectiveness of 
life-style interventions, such as modification of dietary 
intakes and increase of physical activity, on the prevention 
and treatment of diabetes [14,15]. This is particularly 
important for patients who have been diagnosed of 
non-insulin dependent diabetes mellitus (Type II Diabetes).  

Lifestyle interventions are traditionally promoted through 
patient education. Recently, there has been discussion about 
building computer-assisted programs to provide frequent 
feedbacks and tailored plans of behavioral modification. 
Controlled random trials have presented evidence on its 
effectiveness in improving patient adherence and clinical 
outcomes [16].  

Finally, wellness data collected for disease and lifestyle 
management can be accumulated to generate evidence for 
clinical decision support and disease learning. They can help 
identify leading indicators of disease progression in different 
cohorts [17,18]. Previous studies have also developed 
physiological models to simulate the interrelationships of the 
key players in the control system [19]. 

VI. CONCLUSION 

In this paper, we advocate an open platform for wellness 
management ecosystem. The key components and related 
services of the platform are illustrated. In particular, 
wellness monitoring and analytic services are presented. By 
providing open API and service management facilities, we 
are expecting ISVs can rapidly develop/deploy new services 
and related business model by focusing on core business 
logics such that an ecosystem can be formed for wellness 
management. Such an ecosystem can facilitate the 
development of wellness management services and 
applications, resulting in high quality and low cost 
healthcare systems.  
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